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1. Introduction 

The VISSR Atmospheric Sounder (VAS) is an upgrade to the Visible-Infrared Spin-Scan 

Radiometer (VISSR) on the Geosynchronous Operational Environmental Satellites (GOES) 

launched since 1980. VAS has twelve infrared channels designed to provide frequent, high- 

resolution information about temperature and moisture fields over the United States. For example, 

VAS multispectral data have provided time-lapse images of overlapping moisture structures in the 

middle and lower troposphere (Chesters et af., 1983; Petersen et al., 1984), and VAS soundings 

have been useful in objective mesoscale analyses of preconvective environments (Mostek et af., 

1986; Petersen and Keyser, 1987). While VAS soundings add important mesoscale information 

for diagnostic analyses of severe storm environments, Mostek et al. (1986) found that the lack of 

midday radiosondes over the United States was an important limitation to a VAS sounding 

algorithm based on regression techniques. Furthermore, these VAS case studies suffer from a lack 

of conventional "ground truth" data which independently resolves upper air conditions. 

Because the operational radiosonde network is too sparse and infrequent to properly resolve the 

mesoscaie structure apparently observed by VAS, an Atmospheric Variability Experiment (AVE) 

was performed in 1982 in a joint effort by NASA, NOAA and Texas A&M University to verify 

VAS mesoscale sounding capabilities (Dodge et al., 1985). AVE radiosondes were launched at 3 

hour intervals from a regional network of National Weather Service (NWS) stations in the central 

United States while VAS simultaneously gathered radiometric data. At the same time, a mesoscale 

network consisting of 13 special AVE radiosonde sites was operated in north-central Texas, also 

launching balloons at 3 hour intervals. The AVE regional observations at non-synoptic intervals 

establish a larger setting for understanding the events observed at high-resolution by the AVE 

mesoscale network over north-central Texas. 
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On 6 March 1982, a late winter storm passed over the AVE regional and mesoscale networks. 

The strong temperature @en& in the cloud-free post-frontal environment provide optimal 

conditions for verifying VAS temperature soundings using the AVE "ground truth" observations. 

Three different satellite retrieval algorithms were originally applied to the same VAS radiances 

from the 6 March 1982 case: two physical models developed by Smith et af. (1983) and a statistical 

model developed by Lee et al. (1983). The VAS soundings were evaluated with respect to the 

AVE profiles for accuracy by Jedlovec (1985) and for structure by Fuelberg and Meyer (1986). 

They found that VAS temperature soundings from all three algorithms were remarkably similar. 

Deviations with respect to the AVE mesoscale verification data averaged S ' C ,  and VAS horizontal 

gradients and changes compared fairly well to the AVE data at many pressure levels. 

However, the VAS soundings on 6 March 1982 failed to resolve temperature profile deviations 

from the average lapse rate. In particular, the VAS soundings scarcely detected a mid-level cold 

pool over north-central Texas. Although the vertical resolution of the VAS channels is limited by 

their broad weighting functions, such a cold pool should decrease the brightness of several infrared 

channels by several times their noise levels and hence should have been better resolved by the 

satellite soundings. There was a similar deficiency in the VAS soundings for the lowest layer of 

the troposphere, where a temperature inversion was not resolved. 

It is important to establish how well VAS can resolve profile anomalies such as occurred on 6 

March 1982 because temperature structures indicate local processes that are often unresolved by the 

operational synoptic network. VAS soundings must provide moderate vertical resolution of 

thermal structures to be useful for mesoscale analysis or numerical forecast models. This study 

aims to show that the poor vertical resolution in the initial VAS soundings for the 6 March 1982 

case can be improved and that the insensitivity of the regression retrievals to the rather large 

temperature anomalies was due to limitations in the sounding algorithms and not in the VAS 

radiometer itself. 
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Therefore, the VAS soundings for the 6 March 1982 case are recomputed using a enhanced 

version of the regression remeval algorithm which was originally developed for VAS by Lee et al. 

(1983). Two simple improvements are introduced: (1) the regression matrix is calculated using the 

radiosonde observations from the AVE regional sites at 1700 and 2000 GMT on 6 March 1982; 

and (2) the statistical conditioning factor is changed from a conservative 10/1 signdnoise ratio to 

an optimistic 100/1 ratio for those VAS channels which are sensitive to tropospheric temperature. 

The aim is to nine the VAS tc..gyssinn e ~ e v d  dgc&jh-q- f ~ r  syr?cgt& cc,n,&~cns by uskg ~i&jq 

ground-based profiles collected by the relatively sparse AVE radiosondes launched from N W S  

sites, without introducing any horizontal structure into the first-guess field (as the physical 

algorithm does) and without drawing upon the special mesoscale AVE "ground truth" radiosondes 

used for independent verification over north-central Texas. 

Section 2 briefly discusses synoptic conditions for 6 March 1982 based on operational data 

sources, and describes the VAS/AVE database. Section 3 discusses the differences between the 

original VAS regression algorithm (VAS 1) and the enhanced algorithm (VAS2). Section 4 

compares AVE, VAS1 and VAS2 temperature soundings, looking for improved resolution of the 

mid-level the cold pool. Section 5 compares AVE, VAS1 and VAS2 low-level moisture soundings 

to determine whether structure in the water vapor soundings is also improved by the algorithm 

enhancements. Section 6 summarizes the results and discusses the implications of this case study 

for eventual production of VAS soundings for mesoscale applications on a more routine or 

operational basis. 
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2. Operational and VAS/AVE Data 

a. Synoptic discussion 

This case is characterized by a late winter storm which passed over the south-central United 

States, producing snow in Colorado, Oklahoma and northern Texas and cold rain from central 

Texas to the Gulf Coast, Behind the storm system, cold dry air pushed rapidly southeastward into 

the region, so that a cloud-free post-frontal environment prevailed over north-central Texas after 

1700 GMT. Fig. 1 presents a time-series of surface analyses and corresponding GOES visible 

imagery for the afternoon of 6 March. The GOES images in Fig. 1-b depict a rapid clearing across 

Oklahoma and north-central Texas behind the storm system, with melting snow cover across 

southern Colorado and the Texas-Oklahoma panhandle. The surface temperature fields in Fig. 1-a 

indicate that a strong temperature gradient is present beneath the cloud cover behind the front along 

the Gulf Coast, that cooler temperatures are maintained by snow cover in Colorado and the Texas- 

Oklahoma panhandle, and that mid-afternoon solar heating warms the dry air in the boundary layer 

over west-central Texas. 

Fig. 2-a presents a synoptic analysis of upper air conditions based on the operational N W S  

radiosonde observations at OOOO GMT on 7 March 1982. The post-convective environment across 

Texas contains strong low- and mid-level temperature gradients associated with a subtropical jet 

streak at the base of a mid- and upper-level trough which extends from the upper-Mississippi 

valley southeastward into Texas. The clear zone depicted in Fig. 1-b over north-central Texas and 

Oklahoma extends across the AVE regional and mesoscale network mapped in Fig. 2-by providing 

ideal conditions for calculating VAS temperature soundings which can be compared to the special 

AVE radiosondes operating that day. More complete synoptic analyses for this case are described 

by Jedlovec (1985) and Fuelberg and Meyer (1986). 
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SUNSET 

a ) SFC analysis 

b) GOES visible 

FIG. 1. Operational subsynoptic observations during the last three AVE observing periods 
over the central United States on the afternoon of 6 March 1982, following a late winter storm over 
the Texas-Oklahoma region: (a) analyses of surface pressure (solid, mb), temperature (dashed, 
'C) and surface fronts; and (b) GOES visible images. The bright areas in the GOES images of the 
Texas-Oklahoma panhandle are melting snow cover, not clouds, and the image at sunset is contrast 
enhanced in order to distinguish the faintly lit clouds from the surface. 
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~~ ~ 

a) NWS analysis 

SUNSET 

sites 

FIG. 2. The central United States at 2300-0000 GMT on 6-7 March 1982: (a) a synoptic 
upper-air analysis of 500 mb geopotential height (solid, dam), of 500 mb temperature (dashed, 
"C), and of 300 mb wind speeds (lightly stippled for 45 to 55 m sec-1 and darkly stippled above 55 
m sec-1); and (b) a map showing the location of FAA surface reports (+), radiosonde profiles from 
the synoptic N W S  operational network (0), from the asynoptic AVE regional network (A), and 
from the special AVE mesoscale (n) network. Cloud-free radiosonde sites determined from Fig. 
1-b are marked with filled symbols, and cloudy sites are marked with unfilled symbols. 
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b. The database 

Table 1 provides a summary of the datasets gathered during the VAS/AVE operations on 6 

March. Five periods of contemporaneous data were obtained within f l  hour at 3 hour intervals. 

For simplicity, they are call& 

"dawn" (1100 to 1300 GMT), 

"morning" (1400 to 1600 GMT), 

"noon" (1700 to 1900 GMT), 

"mid-afternoon" (2000 to 2200 GMT), 

"sunset" (2300 to 0100 GMT). 

Only the last three periods (collectively called "afternoon") are analyzed in this study because 

clouds covered most of the TexasOklahoma region prior to 1700 GMT. Of the seven datasets 

listed in Table 1; the first four enmes enumerate the ground based radiosonde and surface datasets 

pictured in Fig. 2-b, and the last three entries list the available satellite data swaths. The database 

consists of: 

1) N W S  synoptic radiosonde observations in North America, consisting of the 

conventional upper-air measurements obtained at 1200 and oo00 GMT. 

2) AVE regional radiosonde observations in the central United States, launched 

asynoptically at 3 hour intervals from the N W S  sites. 

3) AVE mesoscale radiosonde observations in north-central Texas, also launched at 3 hour 

intervals from special mobile sites. 

4) Federal Aviation Administration (FAA) surface stations in the central United States, 

whose reports are utilized as predictors in the VAS regression algorithm in order to improve 

sounding accuracy in the boundary layer (see Lee et al., 1983). The surface reports of cloud cover 

are also used to decide whether or not a nearby VAS sounding should be attempted when the 

GOES visible data is ambiguous at that location. 
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5 )  GOES infrared (IR) satellite data in 12 VAS channels over the central United States, 

acquired at 3 hour intervals within fl hour of the corresponding AVE observations. The VAS 

infriued data is available at approximately 15 km horizontal resolution. 

6) GOES Visible-Infrared Spin-Scan Radiometer (VISSR) visible (vis) data at 1 km 

horizontal resolution. The VISSR data is obtained simultaneously with the VAS data, and 

indicates areas where visible cloud cover precludes infrared soundings. 

7) TIROS Operational Vertical Sounder (TOVS) soundings from the operational NOAA 

polar-orbiting satellite over the AVE region at 1500 GMT, based upon its complement of 

microwave and infrared (pwave+IR) instruments. The independent TOVS data will be used in 

Section 4 to compare the resolution of operational soundings from a polar-orbiting satellite to the 

VAS/AVE soundings in the mesoscale cold pool over north-central Texas. Because the TOVS 

soundings are reported as layer averages, they are interpolated to pressure levels for comparison to 

the corresponding VAS and AVE soundings. 

t .  
t .  
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TABLE 1. Ground-based and satellite-based datasets for the VAS/AVE case on 6 March 1982. 

The datasets are grouped into five local-time periods that occur within f l  hour at 3 hour intervals 

between operational synoptic observations. The noon, mid-afternoon and sunset periods capture 

significant temperature gradients and are sufficiently cloud-free to be suitable for verifying VAS 

temperature soundings using the AVE mesoscale observations. Fig. 2 maps the locations of 

ground-based observing sites duxing the final observing period at sunset. 

~~~~ ~ ~~ ~~ 

Local t i m e :  D A W N - N O O N A F T E R N O O N S [ J N S E T  

GMT (hour) : 11 12 13 14 15 16 17 18 19 20 21 22 23 00 lx2zu 

GROUND - BASED 
NWS synoptic: 

AVE regional: 

AVE mesoscale: 

FAA surface: 

SATELLITE 

VAS infrared: 

VISSR h g e :  

94 125 21 9 

24 23 24 24 24 11 9 

11 ' 13 12 12 12 60 

510 557 57 4 586 544 2?53 

IR IR IR IR IR 5 

v i s  v i s  v i s  v i s  4 

NQAA/Tovs system: pwavetIR 1 
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3. The VAS Sounding Algorithm 

a. VAS channels 

The weighting functions for all twelve VAS infrared channels are shown in Fig. 3. VAS is 

sensitive mainly to tropospheric and cloudtop temperatus, surface (skin) temperature, and water 

vapor. Some VAS channels have sensitivities which should be mitigated when the retrieval 

algorithm is being enhanced for maximum response to tropospheric temperature. In particular, 

channels 9 and 10 are indicators of mid-level water vapor, while channel 12 indicates surface 

(skin) temperature and is sensitive to cloud contamination and reflected sunlight. Consequently, 

channels 9,10 and 12 are given no additional weight in the enhanced regression algorithm. 

Radiometric noise always requires some attention in a satellite sounding algorithm. VAS 

single-sample noise characteristics range from less than M. 1 K brightness temperature noise for 

the 11 pm window, channel 8, to more than s . 0  K noise for the stratospheric 15 pm band, 

channel 1 (Chesters et al., 1985). In order to reduce random noise to approximately fl.25 K for 

the mid- and lower-tropospheric channels, VAS observations are f is t  "dwell averaged" by 

repeated observations of the same scanline and filter and then spatially averaged to create 60 km 

sounding fields-of-view. For comparison, the horizontal resolution of the AVE special mesoscale 

network is approximately 100 km between sites. 

b. Statistically conditioned regression 

VAS regression soundings are calculated by a statistically conditioned algorithm that utilizes a 

combination of VAS radiances and ancillary FAA surface data to predict atmospheric temperature, 

moisture and stability values over the United States (Lee etal., 1983). The ancillary surface data 

improves accuracy in the boundary layer. The statistical conditioning suppresses noisy channels 

and stabilizes a regression matrix calculated from a modest number of observations (Marquardt and 

Snee, 1975). 
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FIG. 3. VAS weighting functions (dddlnP) using the US Standard Atmosphere profdie. 
Dashed lines indicate those channels which do 
conditioning in the VAS2 soundings. 

receive more optimistic signaVnoise 
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Statistical conditioning factors are estimated from SignaVnoise (S/N) ratios, where the "signal" 

(S) is the atmospheric variance (FC, air temperature) and the "noise" (N) is observational error 

(a, brightness temperature). Lee et al. (1983) studied the effect of different signaVnoise ratios 

upon VAS regression soundings, and they found that S/N>100/1 produces erratic soundings, 

S/N<1/1 suppresses the effects of a predictor, and retrievals are otherwise insensitive to the exact 

value of S/N. For the VAS1 soundings, S/N=lO/l was used for all predictors, based upon 

relatively conservative signal and noise estimates, f5'C and fo.5 K, respectively. For the VAS2 

soundings, S/N=lOO/l is used for the VAS and surface predictors of atmospheric temperature, 

based upon optimistic signal and noise estimates appropriate to the lower troposphere, +lO'C and 

fo. 1 K, respectively. In both sets of regression retrievals, S/N=1/10 is applied to suppress 

channel 12, and S/N=10/1 is applied to the water vapor channels 9 and 10. 

c. VAS1 and VAS2 regression matrices 

Regression requires a dependent radiosonde dataset to calculate the retrieval matrix. The VAS 1 

matrix was calculated from a total of 50 cloud-free synoptic scale observations for three observing 

periods: 

1) 18 reports from the 1200 GMT operational N W S  radiosonde network; 

2) 15 "synthetic" profiles at N W S  sites which are time-interpolated to 1800 GMT using the 

1200 and oo00 GMT operational radiosondes and are also adjusted in. the boundary layer to match 

nearby FAA surface observations of temperature and dewpoint; and 

3) 17 reports from a combination of the AVE regional and the N W S  operational radiosonde 

networks at 2300 and oo00 GMT, respectively. 

The "synthetic" profiles were i n d u c e d  at 1800 GMT in order to compensate for a deficiency in 

regression matrices determined from synoptic observations. The 1200 and 0000 GMT operational 

soundings do not include any of the high surface temperatures that normally develop in the United 

States between 1500 and 2100 GMT. Space-time interpolation is the simplest way to establish a 

12 
I .  



set of dependent profiles containing midday conditions when using nothing but the operational 

synoptic database. 

The VAS2 dependent dataset is drawn from the same spatial region as the VAS1, but contains 

more accurately observed midday conditions to help the algorithm distinguish between the 

radiometric effects of surface and atmospheric temperature. The VAS2 dataset also does not 

contain 1200 GMT observations at local dawn, which are not very useful for determining the 

VAS 1 regression coefficients for low-level parameters because of he pmr mdi~metrk rnnm-st 

between the surface and the lower atmosphere at this time of day. The VAS2 regression matrix 

was calculated from a total of 49 cloud-fiee regional scale observations from three afternoon 

observing periods: 

1) 15 reports from the AVE regional radiosonde network at 1700 GMT and 

2) 17 reports from the AVE regional radiosonde network at 2000 GMT, in addition to 

3) 17 reports also used to determine the VAS 1 matrix, from a combination of AVE regional 

and N W S  operational radiosonde networks at 2300 and oo00 GMT, respectively. 

Table 2 compares the statistical design of the VAS1 and VAS2 methods. In both methods, the 

satellite retrievals are verified against the same independent set of 32 mesosca radiosonde 

observations during the last three observing periods by the AVE special network over north-central 

Texas. The confidence level for the RMS diffexnce between 32 VAS-AVE profdes should be 

approximately fo.5'C. During each of the three afternoon observing periods, there are 

approximately 130 VAS retrievals and 27 AVE combined regional and mesoscale radiosonde 

observations available for objective analyses over the Texas-Oklahoma region. 
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TABLE 2. Comparison of the experimental designs for the VAS 1 and VAS2 soundings. The 

VAS2 regression matrix is trained using asvnoDtic AVE regional radiosondes and more optimistic 

signaVnoise conditioning than VAS 1. All VAS profiles are verified with the same independent 

AVE mesoscale observations. Objective analyses of the VAS soundings are compared to 

corresponding analyses of combined AVE regional and mesoscale data in the region for each of the 

three cloud-free observing periods during the afternoon of 6 March. 

msa YAsz 

REGRESSION MATRIX TRAINING 

50 sites, total 

NWS synoptic 1200 GMT 

NWS synoptic "1800" GMT 

AVE regional 2300 GMT 

4 9  sites, total 

AVE regional 1700 GMT 

AVE regional 2000 GMT 

AVE regional 2300 GMT 

NWS synoptic 0000 GMT NWS synoptic 0000 GMT 

SIGNAL/NOISE CONDITIONING 

100/1 for chan. 1 to 8 and 11 

10/1 for chan. 1 to 11 10/1 for chan. 9 and 10 

10/1 for SFC temp. and dewpt. 100/1 for SFC temp. and dewpt. 

1/10 for channel 12 1/10 for channel 12 

PROFILE VERIFICATION 

32 mesoscale sites, total 

noon, mid-afternoon and evening 

REGIONAL 

1130 VAS retrievals, each 

127 AVE radiosondes, each 

noon, mid-afternoon and evening 

32 mesoscale sites, total 

noon, mid-afternoon and evening 

ANALYSES 

a130 VAS retrievals, each 

a27 AVE radiosondes, each 

noon, mid-afternoon and evening 
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4. VAS/AVE Temperature Soundings 

a. The 500 mb cold pool 

The poor vertical resolution of the original VAS 1 soundings is illustrated in Fig. 4, which 

compares a remeved temperature proflle with a corresponding radiosonde profde at local noon 

from Henrietta, Texas (HEN), located under the cold pool near the north edge of the AVE special 

mesoscale network. The VAS1 profile scarcely resolves three separate temperature deviations 

from the average lapse rate: from 200 to 300 mb (the tropopause), from 400 to 600 mb (the cold 

pool), and below 850 mb (an inversion in the boundary layer). Low-level inversions are well 

known for being difficult to resolve using VAS (Robinson et d., 1986), while tropopause 

determination suffers from large noise levels in the VAS upper-level channels. However, mid- 

level temperature variations should be detected by several of the VAS channels whose weighting 

functions are significant near 500 mb, as illustrated in Fig. 3. 

Because the cold pool is approximately 4 T  colder through a layer that is approximately one- 

quarter the thickness of a VAS weighting function, the cold pool should decrease the brightness 

temperature by approximately 1 K for those VAS channels which are sensitive to mid-level 

temperature. Of course, this "signal" must compete with radiomemc noise (at least 3 . 2 5  K) and 

with the effects of other temperature variations above and below the cold pool. Attempts were 

made to detect the cold pool using multispectral imaging techniques with linear combinations of 

VAS channels 3,4,5 and 6, but the cold pool's net effect is apparently too faint to detect so easily. 
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FIG. 4. The AVE radiosonde temperature (solid, 'C) profile from-Henrietta, Texas (HEN) at 
1700 GMT located on the northern edge of the special mesoscale network compared to the 
corresponding VAS 1 satellite retrieval at 1730 GMT (dashed). Temperature deviations from the 
average lapse rate occur in an inversion just above the surface, for a cold pool near 500 mb, and at 
the tropopause. 
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The horizontal extent of the cold pool at 500 mb over Texas-Oklahoma is presented in Fig. 5 

for the midday AVE, VAS 1 and TOVS soundings. The combined AVE radiosonde analysis in Fig 

5-a indicates that the cold pool entered the mesoscale network from the Texas panhandle region 

behind a strong mid-tropospheric thermal gradient across the cloudy area over eastern Texas. The 

analysis in Fig. 5-b based on VAS 1 soundings places a relatively weak cold feature over central 

Oklahoma, in the data-void region of the AVE observations. The VAS1 temperature gradient over 

the sou&ern mesoscaie network ais0 &-en from the corresponding AVE anaiysis in that it is 

weaker and oriented in a more north-south direction. Much of this difference in gradients is due to 

the lack of VAS soundings in the cloudy region over southeastern Texas. 

The corresponding analysis from the TOVS operational satellite soundings is shown in Fig. 5- 

c. TOVS had unfortunately stopped taking data for calibration while it was passing over the 

Texas-Oklahoma panhandle. Thus, the TOVS soundings completely fail to detect the cold pool. 

Over the cloud-free part of the special mesoscale network, TOVS soandings indicates a mild north- 

south temperature gradient similar to VAS 1. Ideally, TOVS soundings could be better than VAS 

Secause TOVS has microwave channels, more hfrared channels, and lower noise levels. 

However, Hillger and Vonder Haar (1979) found that TOVS operational soundings do not fully 

resolve mesoscale structure, leading Hillger and Vonder Haar (198 1) to develop an algorithm 

which better utilizes the channels and resolution of the TOVS instruments. 

17 



a) AVE combined b) VAS1 

c) TOVS 
c 

FIG. 5. Temperature ('C) analyses at 500 mb for local noon over Oklahoma and north-central 
Texas from: (a) 1700 GMT AVE regional and mesoscale radiosonde data combined; (b) 1730 
GMT satellite soundings using the original VAS 1 regression algorithm; and (c) 1500 GMT 
operational satellite soundings from the TOVS system on the NOAA polar orbiter. The dashed 
outline encompasses the area of the AVE special mesoscale network. 

18 
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b. VASl and VAS2 soundings 

Temporal consistency for the improved VAS2 satellite soundings is demonstrated in Fig. 6, 

which presents a comparison between time-series of 500 mb temperature analyses for AVE, VAS 1 

and VAS2 soundings during the three afternoon periods on 6 March. The AVE analysis (Fig. 6-a) 

clearly captures the cold pool moving southeastward across north-central Texas and the frontal 

gradient moving across the Gulf Coast. The original VASl temperature soundings (Fig. 6-b) 

pph&= xL=f C,f ,,hp, p! &??d teqpup&J- p-dec t  gi L;;;t fd tG pqjgji;y =&-e 

horizontal smcture during the late-afternoon soundings. The new VAS2 temperature soundings 

(Fig. 6-c) are much more temporally consistent than the VAS1 analyses, capturing the cold pool as 

a distinct structure at all three times. The VAS2 soundings still underestimate the intensity of the 

cold pool, but are consistent in centering this feature over the AVE data-void region of eastern 

Oklahoma. The VAS2 temperature gradient across the southern pomon of the mesoscale network 

is stronger than the corresponding VAS1 gradient, but still weaker than the AVE gradient. The 

VAS2 gradient is also more properly aligned with the northwest-southest direction presented in the 

AVE analyses. 
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a) AVE combined 

b) VAS1 

SUNSET 
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l27 ~27j 

p O . X L t d 7 ?  2330 GMT 8 MAR 82-VAS 500 MB TEMP(OC 

FIG. 6. A time-series of temperature ('C) analyses at 500 mb over north-central Texas and 
Oklahoma during the three cloud-free observing periods on 6 March 1982 for: (a) AVE regional 
and mesoscale radiosondes combined; (b) original VAS 1 soundings; and (c) enhanced VAS2 
soundings. Vertical cross sections of potential temperature are presented in Fig. 8 along the paths 
indicated by the thick solid lines drawn diagonally across the mid-afternoon fields. 
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In order to assess the effect of algorithm enhancement on the accuracy of VAS temperature 

soundings at other pressure levels, the root mean square (RMS) differences between the VAS 1 and 

VAS2 profiles and the independent AVE mesoscale verification radiosondes are presented in Fig. 

7. The error maxima for the VAS1 soundings correspond to the problem levels indicated in Fig. 4: 

the tropopause, the cold pool and the boundary layer inversion. The VAS2-AVE errors in the 

temperature soundings decrease by approximately fl.O'C in these three layers, demonstrating the 

effectiveness of the VAS2 algorithm enhancement. The greatest residual errors occur at 500 mbj 

and are reflected in the differences between the VAS and AVE analyses in Fig. 6. Approximately 

half of the "signal" h m  the cold pool is recovered using the enhanced VAS2 algorithm. The 

remainder of the "signal" is not retrieved, due either to the limitations of a regression approach, to 

confusion with radiometric noise, or to blurring with other pressure levels by the VAS weighting 

functions. Unfortunately, no more algorithm enhancements are available. If the regression matrix 

were determined from the AVE mesoscale radiosondes, the residual errors presented in Fig. 7 

might decrease, but they would no longer provide independent verification. More elaborate 

statistical conditioning has been tried, but it does not significantly reduce the VAS2 errors near 500 

mb. 
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FIG. 7. RMS errors in the retrieved temperature ('C) profiles, comparing the original VAS 1 
and enhanced VAS2 retrievals to co-located profles from the independent AVE mesoscale network 
during the last three observing periods on 6 March 1982. 



c. VAS resolution 

Because satellite soundings can mis-assign a 500 mb temperature variation to adjacent levels, 

simple vertical blurring in VAS soundings should result in thickness observations that are still 

approximately correct for layer averages. To test this hypothesis, vertical cross sections of 

potential temperature 0(p) were calculated and are presented in Fig. 8 for the AVE, VAS1 and 

VAS2 soundings during the mid-afternoon episode, when the cold pool was entering the 

mesoscale network from the northwest. The cross sections extend from the Texas panhandle htn 

the special mesoscale network along the diagonal lines drawn on the corresponding mid-afternoon 

panels in Fig. 6. Each cross section is based upon an objective analysis of potential temperature 

drawn from four individual soundings indicated with vertical lines in Fig 8. The VAS cross 

sections in Figs. 8-b and 8-c do not extend quite as far to the southeast as the AVE cross section 

due to lingering cloud cover above the southeastern edge of the special radiosonde network at this 

time. The AVE cross section in Fig. 8-a clearly delineates the tropopause, cold pool, and low-level 

inversion, while the VAS1 cross section scarcely resolves any of these structures. By contrast, the 

VAS2 cross section determines these structures nicely, and the 500 mb cold pool is especially well 

defined. Therefore, the new VAS2 algorithm is successful in delineating the bulk thermodynamic 

effect of the cold pool over a deep layer. 
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FIG. 8. Vemcal cross-sections of potential temperature (8(p), Kelvin) across north-central 
Texas at mid-afternoon on 6 March 1982 based upon temperature profiles from: (a) the AVE 
regional and mesoscale networks, (b) the original VAS 1 soundings and (c) the enhanced VAS2 
soundings. The cross sectional path is indicated on the corresponding mid-afternoon analyses in 
Fig. 6. 



While vertical resolution is limited, VAS soundings can provide very good horizontal 

resolution over large regions. For instance, the AVE mesoscale network provides 100 km 

resolution only in a limited area over north-central Texas, while the VAS soundings provide 60 km 

resolution over the entire cloud-free region. Fig. 9 compares the effects of different resolution and 

coverage on 500 mb temperature analyses at local sunset, using (a) the AVE regional network 

alone, (b) the AVE regional and mesoscale networks combined and (c) the VAS2 soundings. The 

AVE regional observations in Fis. 9-a contain a single repor! nf -29'C zit Stephpfis~dle, Tcxa 

(SEP) in the center of the special network, but the 500 mb cold pool is not resolved until mutually 

supporting radiosonde data is supplied by the AVE mesoscale network in Fig. 9-b. However, the 

AVE combined analysis in Fig. 9-b provides little resolution across the northern Texas panhandle 

and Oklahoma, where the VAS2 soundings in Fig. 9-c apparently resolve several additional 

features: 

1) another cold pool over the Texas-New Mexico border, 

2) a warm pool over the Texas-Oklahoma panhandle, and 

3) arl extension to the original cold pool over central Oklahoma. 

Although these thermal features are too far west and north to be verified by using the AVE 

mesoscale radiosondes, the additional structures are just as creditable as the thermal gradient and 

cold pool resolved by the VAS2 soundings over the "ground truth" network in north-central Texas. 

A comparison between Figs. 9-a and 9-c indicates how bridging the gap between a ground- 

based regional profiler network and high resolution satellite radiances can provide meso- 

resolution of upper-air thermal feams. This case study indicates that significant structural 

information could be retrieved operationally if regional profilers were routinely operated at 

asynoptic periods and used to determine a VAS regression retrieval matrix for the remainder of the 

field. 
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c) VAS2 

FIG. 9. Sample temperature (‘C) anlayses at 500 mb during the 6 March sunset period which 
indicate the effect of increasing horizontal resolution in the observations over the Texas-Oklahoma 
region for: (a) the AVE regional profile network alone; (b) the AVE regional and mesoscale 
networks combined; and (c) the VAS2 regression soundings based upon asynoptic regional profde 
observations. 



5. VAWAVE moisture soundings 

Fig. 10 presents the AVE, VAS 1 and VAS2 time-series of 850 mb dewpoint analyses during 

the afternoon of 6 March. The AVE "ground truth" dewpoint analyses in Fig. 10-a are quite 

chaotic, with large variations in space and time among the mesoscale radiosonde observations 

within each period and between periods. The objective analysis scheme can not draw reliable 

dewpoint contours using the AVE mesoscale radiosonde data because there are few mutually 

supporting observations. By contrast, the VAS1 850 mb dewpoint soundings in Fig. 10-b are 

temporally and spatially self-consistent and remeve a persistently dry feature over the western edge 

of the AVE mesoscale network. The corresponding VAS2 850 mb dewpoint soundings in Fig. 

1O-c are temporally less consistent than V.4S1, but retain some of the VAS1 structural features 

such as the dry pocket over westem Texas. 

Dewpoint sounding accuracy at other pressure levels is presented in Fig. 11 in the form of 

RMS differences between the VAS 1 and VAS2 soundings and the verification profiles from the 

AVE mesoscale radiosondes. The lowest levels agree fairly well, but VAS dewpoint soundings 

from 600 to 800 mb have large errors because VAS lacks a water vapor sounding channel for the 

mid-troposphere. VAS-AVE differences are not available above 500 mb because the AVE 

radiosondes do not provide reliable moisture observ+ations of the upper troposphere. 
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FIG. 10. A time-series of dewpoint temperature ('C) analyses at 850 mb over north-central 
Texas and Oklahoma during the three cloud-free observing periods on 6 March 1982 for: (a) AVE 
regional and mesoscale radiosondes combined; (b) original VAS 1 soundings; and (c) enhanced 
VAS2 soundings. 
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FIG. 11. &VS differences in the retrieved dewpoint temperature ("C) profiies, comparing the 
original VAS 1 and enhanced VAS2 remevals to celocated profdes from the independent AVE 
mesoscale network during the last three observing periods on 6 March 1982. 
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Fuelberg and Meyer (1986) argue that the irregularities in the AVE radiosonde dewpoint 

soundings are due to analyzing a horizontal slice through a genuinely complex, rapidly changing 

moisture field. VAS dewpoint retrievals at any level are also questionable considering the poor 

vertical resolution of the VAS weighting functions. Moisture soundings over a thick layer should 

provide a more reliable test of VAS accuracy. Consequently, Fig. 12 compares AVE, VAS1 and 

VAS2 total precipitable water (PW) fields to determine whether the bulk moisture soundings are 

more coherent than level-specific dewpoint soundings. The AVE precipitable water fields 

presented in Fig. 12-a are indeed more uniform than the corresponding AVE 850 mb dewpoint 

fields in Fig 10-a, and are dominated by a strong northwest-southeast gradient within the cloudy 

region over eastern Texas. This PW gradient extends across the AVE special network, although it 

is considerably weaker there. Another PW feature in the AVE fields is a persistently dry region 

over northwest Texas which develops into a dry tongue over Oklahoma, both of which are inferred 

over regions with sparse AVE observations, unfortunately. In general, the PW amounts and 

patterns determined from the VAS1 and VAS2 soundings in Figs. 12-b and 12-c are roughly 

consistent with each other and with the AVE analyses over the cloud-free region in Fig. 12-a. As 

hoped, the VAS2 PW amounts are larger and the gradient across the AVE mesoscale network is 

stronger than in the corresponding VAS1 soundings, in better agreement with the AVE analyses. 

Outside of the region resolved by AVE mesoscale verification network, the VAS2 soundings 

display more PW structure than the corresponding VAS1 soundings, as witnessed by a persistently 

moist region over the melting snow in the Texas-Oklahoma panhandle. Unfortunately, the most 

significant moisture features in the VAS regression soundings appear to occur outsi& of the high 

resolution radiosonde network, and thus are not subject to independent verification. 



a) AVE combined 

b) VAS1 

c) VAS2 

FIG. 12. A time-series of total precipitable water (mm) analyses at 500 mb over north-central 
Texas and Oklahoma during the three cloud-free observing periods on 6 March 1982 for: (a) AVE 
regional and mesoscale radiosondes combined; (b) original VAS 1 soundings; and (c) enhanced 
VAS2 soundings. 
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In theory, the accuracy of VAS water vapor retrievals are fundamentally limited in a dry 

environment such as occurred over the AVE special network on the afternoon of 6 March 1982 

(precipitable water less than 8 mm). The VAS channels were designed to measure infrared 

absorption by relatively large amounts of water vapor (precipitable water from 20 to 50 mm) for 

the detection of relatively moist pre-convective conditions (see Chesters et al., 1982,1983 and 

1987; Robinson et al., 1986). Birkenheuer and Snook (1986) independently report that VAS 

precipitable water soundings often are unreliable for amounts less than 18 mm . Therefore, the 

moisture observations in the dry post-convective environment on 6 March 1982 do not seem 

suitable for verification of VAS low-level water vapor soundings. 



6. Summary, Conclusions and Discussion 

An Atmospheric Variability Experiment was operated in 1982 to provide radiosonde 

observations of complex mesoscale environments suitable for verifying satellite soundings derived 

from VAS. On 6 March 1982, the AVE mesoscale network over north-central Texas captured 

significant temperature structures in cloud-free air behind a late winter stom The corresponding 

set of original VAS soundings captured regional gradients and temporal changes for this event but 

did a poor job of resolving temperature deviations from the mean lapse rate. Previous studies of 

this case found equally poor vertical resolution in VAS soundings derived using either a physical 

or a statistical approach. Consequently, the 6 March case is re-processed using enhancements to 

the statistical algorithm in an attempt to determine whether the VAS retrievals were fundamentally 

limited by the radiances or merely underestimated by the original procedures. 

The statistical algorithm is improved by calculating the regression matrix from asynoptic 

radiosondes launched at N W S  sites in the AVE region and by applying more optimistic 

signdnoise conditioning factors to the regression matrix. VAS temperature soundings from the 

enhanced statistical algorithm display significantly smaller errors with respect to the independent 

mesoscale radiosonde observations over north-central Texas at those levels where the temperature 

profile departs significantly from the avenge lapse rate. As hoped, the enhanced VAS soundings 

resolve a mid-level cold pool fairly well, and improve accuracy in the tropopause and boundary 

layer. Some residual VAS-AVE discrepancies remain for the mid-level cold pool. Attempts to 

further enhance the statistical algorithm were unable to improve accuracy without introducing 

horizontal smcture into the fkst-guess field or utilizing the independent mesoscale radiosonde 

observations. 

For the 6 March case, the VAS total precipitable water soundings indicate low-level moisture 

features which the AVE network could not properly resolve. The post-convective environment on 

6 March is quite dry, making it difficult to determine low-level water vapor accurately from VAS 
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observations. Moreover, the AVE "ground truth" radiosondes do not appear to resolve the 

mesoscale structure of the dewpoint fields. Thus, the 6 March observations are not suitable for 

verifying the accuracy of VAS moisture soundings. 

In conclusion, an enhanced VAS regression retrieval algorithm can detect significant 

temperature variations from a mean lapse rate and delineate three dimensional mesoscale 

temperature fields with useful accuracy. The enhanced VAS soundings better resolve faint 

atmospheric temperature structures which were poorly retrieved by the original VAS soundings 

reviewed by Jedlovec (1985) and Fuelberg and Meyer (1986). However, the improvement in the 

VAS retrievals in this case required the use of -tic rad' iosonde observan 'oris collected in 

addition to the operational network. 

Thus far, several other case studies using VAS soundings have demonstrated only mixed 

success in providing an impact upon analysis of storm environments (Kitmiller, 1986; Shoeni 

and Mosher, 1986; Mostek et af., 1986) or numerical forecast models (Mostek and Olsen, 1986; 

Aune et af., 1987). Like the original VAS soundings for the 6 March case, the VAS soundings in 

these other cases may not have fully utilized the information available in the VAS radiances. The 

results of this 6 March case study indicate that the success of atmospheric soundings from VAS 

radiances may depend upon the existence of upper-air observations at asynoptic times in order to 

resolve the mesoscale thermal fields during the period between 1200 and 0000 GMT over the 

United States. 

To improve future geosynchronous sounding systems, an asynoptic network of ground-based 

temperature and moisture "profilers" could be combined with geosynchronous satellite 

observations to yield accurate soundings of mesoscale features (Westwater et af., 1984). A 

combined satellite- and ground-based sounding system has the potential for exploiting the strengths 

of each observing system to provide high resolution datasets for analysis and prediction. In such a 

scheme, ground-based profilers provide asynoptic temperature and moisture information with very 

good vertical resolution at a select number of points in a region, while the satellite sounder 



provides radiance infomtion with very good horizontal resolution to N1 in mesoscale structure 

between profiler sites during each observing period, as previously discussed in connection with 

Fig. 9. 

The best VAS sounding algorithm to implement for such a combined system is yet to be 

determined. VAS physical and regression algorithms could each benefit from asynoptic profiler 

data The physical algorithm developed for VAS by Smith et al. (1983) requires a good frst-guess 

iemperaturc and moisture fieid, usuaiiy drawn irom a numericai forecast model, but an asynoptic 

profiler network could provide this first-guess field instead. The regression algorithm originally 

developed for VAS by Lee et al. (1983) and enhanced in this study draws upon the asynoptic 

N W S  regional network to improve the regression matrix. An asynoptic profiler network could be 

utilized in the same way to provide operational regression soundings. Chesters et al. (1986) have 

shown that the regression algorithm is fast enough to meet realtime imaging and analysis 

requirements for processing VAS soundings at mesoscale resolution. Of course, combined 

VAS/profiler soundings will require further testing and algorithm development before being 

imp!ezzemed operationally. It appears that the oprationai iiistribuuon of some VAS data products 

could occur by the early 1990's (Boezi and Schmidt, 1985). 
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